890=-16x^2+1500

Simple and best practice solution for 890=-16x^2+1500 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 890=-16x^2+1500 equation:



890=-16x^2+1500
We move all terms to the left:
890-(-16x^2+1500)=0
We get rid of parentheses
16x^2-1500+890=0
We add all the numbers together, and all the variables
16x^2-610=0
a = 16; b = 0; c = -610;
Δ = b2-4ac
Δ = 02-4·16·(-610)
Δ = 39040
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{39040}=\sqrt{64*610}=\sqrt{64}*\sqrt{610}=8\sqrt{610}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{610}}{2*16}=\frac{0-8\sqrt{610}}{32} =-\frac{8\sqrt{610}}{32} =-\frac{\sqrt{610}}{4} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{610}}{2*16}=\frac{0+8\sqrt{610}}{32} =\frac{8\sqrt{610}}{32} =\frac{\sqrt{610}}{4} $

See similar equations:

| 175m−100m+47,750=50,500−175m | | 4x/2-x/1=x/10-4/5 | | 5.2x+900=27.04+30x | | 5+n/3=-2 | | 3x/2-x/1=x/10-4/5 | | -10+m=10–m | | n/9=7n/18=1/9 | | 100(100)=c | | 2^8x-1=16 | | 1k+4-3=-5 | | 7w=9+4w | | -9x+16=56 | | 8+h=17 | | 2x*3x=54 | | 3-(y/6)=9 | | 3x-5(x-2)=-3+2x-7 | | 3√2/2x-40=30 | | 4+f=8f+4 | | (4x/15)(-6x+28/5)=0 | | x+1*3=x+2*2 | | 33=-8w+5(w+3) | | 3(8x-4)-4x=2 | | 16t^2-32t+18=0 | | -12-4x+6=-5x+4 | | x-4^2=100 | | 1/8(h-40)=7/8 | | 100-((18.52*100)/x)=15 | | 3z-3z+4z-1=19 | | -15x+24=8(10+3x)-2 | | 3(x+-2)=-27 | | 18(54)=d | | 16m+4m-13m+4m-10m=18 |

Equations solver categories